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Abstract

In domain-independent automated
planning, the specification of the planning
task is separated from its implementation,
which is provided by domain-independent
planning engines. This approach offers a
high degree of flexibility because planners
are thus able to solve any computational
problem that can be converted into an
automated planning task. However, the
downside of this approach is that plan-
ning tasks’ specifications often lack impor-
tant contextual information based on the
unique properties of the corresponding do-
mains, which might negatively affect the
performance of domain-independent plan-
ners in comparison to the performance of
domain-specific algorithms designed for
the same problems. To at least partially
bridge the performance gap between plan-
ning engines and algorithms, the addi-
tional domain-specific information known
as Domain Control Knowledge (DCK)
could be constructed and encoded directly
into the specifications of planning tasks.

Attributed Transition-Based Domain
Control Knowledge (ATB-DCK) is a type
of DCK that is represented by a finite-
state automaton. Its states and transi-
tions impose additional constraints on the
applicability of actions defined in planning
tasks’ specifications and thus limit the
number of permissible actions the plan-
ning engine can take at each step of the
planning process. The main advantage of
ATB-DCK is its simplicity and readability
even for non-technical users.

The aim of this thesis is to simplify the
process of encoding ATB-DCK into the

planning task specification represented in
the PDDL description language. The the-
sis first formulates a language to represent
ATB-DCK in JSON data format that can
be easily processed by computer programs.
Then, it introduces a graphical editor for
creating and visualizing ATB-DCK as a
finite state automaton, which offers an
intuitive way of constructing data rep-
resentation of ATB-DCK. The graphical
editor includes a text editor to modify
ATB-DCK directly in its JSON data form.
To improve the text editor’s readability,
its particular syntactical elements are vi-
sualized in different colors. The thesis
also implements the process of ATB-DCK
compilation into the PDDL planning task
specification. Finally, the thesis speci-
fies ATB-DCK in three characteristically
unique domains and evaluates its effectiv-
ness for one specific NP-hard task schedul-
ing problem.
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automated planning, PDDL, Domain
Control Knowledge, ATB-DCK
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Abstrakt

V doménově nezávislém automatickém
plánování je specifikace plánovací úlohy
oddělena od její implementace, kterou
poskytují doménově nezávislé plánovače.
Tento přístup nabízí vysoký stupeň flexi-
bility, protože plánovače jsou tak schopny
řešit jakýkoli výpočetní problém, který
lze převést na úlohu automatického plá-
nování. Nevýhodou této přístupu však je,
že specifikace plánovacích úloh často po-
strádají důležité kontextové informace vy-
cházející z unikátních vlastností přísluš-
ných domén, což může negativně ovliv-
nit výkonnost doménově nezávislých plá-
novačů ve srovnání s výkonností domé-
nově specifických algoritmů navržených
pro stejné problémy. Alespoň částečného
překlenutí výkonnostní propasti mezi plá-
novači a algoritmy by mohlo být dosaženo
zkonstruováním dodatečných doménově
specifických informací známých jako Do-
main Control Knowledge (DCK), které by
mohly být zakódovány přímo do specifi-
kací plánovacích úloh.

ATB-DCK (Attributed Transition-
Based Domain Control Knowledge) je typ
DCK, který je reprezentován konečným
stavovým automatem. Jeho stavy a pře-
chody ukládají dodatečná omezení na po-
užitelnost akcí definovaných ve specifika-
cích plánovacích úloh, a tím omezují počet
přípustných akcí, které může plánováč v
každém kroku plánovacího procesu pro-
vést. Hlavní výhodou ATB-DCK je jeho
jednoduchost a čitelnost i pro netechnické
uživatele.

Cílem této práce je zjednodušit proces
kompilace ATB-DCK do specifikace pláno-

vací úlohy reprezentované popisným jazy-
kem PDDL. Práce nejprve formuluje jazyk
pro reprezentaci ATB-DCK v datovém
formátu JSON, který lze snadno zpraco-
vávat počítačovými programy. Poté před-
stavuje grafický editor pro vytváření a
vizualizaci ATB-DCK jako konečného sta-
vového automatu, který nabízí intuitivní
způsob konstrukce datové reprezentace
ATB-DCK. Součástí grafického editoru je
textový editor, který umožňuje upravovat
ATB-DCK přímo v jeho JSON datové po-
době. Pro zlepšení čitelnosti textového edi-
toru jsou jeho jednotlivé syntaktické prvky
vizualizovány různými barvami. V práci
je rovněž implementován samotný proces
kompilace ATB-DCK do PDDL specifi-
kace plánovací úlohy. Nakonec práce speci-
fikuje ATB-DCK ve třech charakteristicky
unikátních doménách a vyhodnocuje jeho
efektivitu pro jeden konkrétní NP-obtížný
problém rozvrhování úloh.

Klíčová slova: doménově nezávislé
automatické plánování, PDDL, Domain
Control Knowledge, ATB-DCK

vii ctuthesis t1606152353



Contents

1 Introduction 1

2 Attributed Transition-Based
Domain Control Knowledge
(ATB-DCK) 5

2.0.1 Planning Task Definition . . . . . 5

2.0.2 ATB-DCK Definition . . . . . . . . 9

2.0.3 Planning Task With
ATB-DCK . . . . . . . . . . . . . . . . . . . . 14

3 ATB-DCK Data Representation 21

3.0.1 JSON Data Format . . . . . . . . 21

3.0.2 DCK Memory Predicates . . . 22

3.0.3 ATB-DCK Variables . . . . . . . 23

3.0.4 ATB-DCK States . . . . . . . . . . 24

3.0.5 ATB-DCK Transitions . . . . . . 24

4 ATB-DCK Graphical Editor 27

4.0.1 PyQt . . . . . . . . . . . . . . . . . . . . . 27

4.0.2 User Interface . . . . . . . . . . . . . 27

4.0.3 Communication Between UI
Components . . . . . . . . . . . . . . . . . . 34

4.0.4 Scene Geometry . . . . . . . . . . . 35

5 Compilation Of ATB-DCK Into
PDDL Planning Task 41

5.0.1 Tarski . . . . . . . . . . . . . . . . . . . . 42

5.0.2 Data Representation Of
Inference Rules . . . . . . . . . . . . . . . . 42

5.0.3 Compilation Process . . . . . . . . 44

6 Experimental evaluation 47

6.0.1 Childsnack . . . . . . . . . . . . . . . . 47

6.0.2 Reconfigurable Machines . . . . 51

6.0.3 Performance Evaluation . . . . . 56

7 Conclusion 59

A Bibliography 61

ctuthesis t1606152353 viii



Figures

2.1 PDDL planning domain model
constructed for the Blocksworld
domain. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 PDDL planning problem
constructed for the Blocksworld
domain. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 ATB-DCK for the Blocksworld
domain. . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Example of the JSON data
format. . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 JSON representation of DCK
memory predicates defined for the
Blocksworld domain. . . . . . . . . . . . . 23

3.3 JSON representation of ATB-DCK
variables defined for the Blocksworld
domain. . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 JSON representation of ATB-DCK
states defined for the Blocksworld
domain. . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 JSON representation of the
ATB-DCK transition defined for the
Blocksworld domain. . . . . . . . . . . . . 25

4.1 Main window of the ATB-DCK
graphical editor. . . . . . . . . . . . . . . . . 28

4.2 Toolbar of the ATB-DCK
graphical editor. . . . . . . . . . . . . . . . . 28

4.3 Scene of the ATB-DCK graphical
editor. . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Scene hierarchy of the ATB-DCK
graphical editor. . . . . . . . . . . . . . . . . 30

4.5 Inspector of the ATB-DCK
graphical editor when nothing is
selected. . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Inspector of the ATB-DCK
graphical editor when a state is
selected. . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Inspector of the ATB-DCK
graphical editor when a transition is
selected. . . . . . . . . . . . . . . . . . . . . . . . 31

4.8 Error popup message - invalid
input. . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.9 UI component "Variables" of the
ATB-DCK graphical editor. . . . . . . 33

4.10 JSON text editor of the
ATB-DCK graphical editor. . . . . . . 34

4.11 Scene coordinate system. . . . . . 36

4.12 Geometry of a state. . . . . . . . . . 36

4.13 Geometry of a line transition. . 37

4.14 Geometry of a curved transition. 38

4.15 Geometry of a self-transition. . . 39

ix ctuthesis t1606152353



5.1 ASP data representation of
inference rules defined for the
Blocksworld domain. . . . . . . . . . . . . 43

5.2 ATB-DCK-enhanced PDDL
planning domain model constructed
for the Blocksworld domain. . . . . . . 44

5.3 ATB-DCK-enhanced PDDL
planning problem constructed for the
Blocksworld domain. . . . . . . . . . . . . 45

5.4 Mapping of ATB-DCK-enhanced
planning operators to original ones
defined for the Blocksworld domain. 46

5.5 Plan extraction from the
ATB-DCK-enhanced solution
generated for the planning task of the
Blocksworld domain. . . . . . . . . . . . . 46

6.1 ATB-DCK defined for the
Childsnack domain. . . . . . . . . . . . . . 48

6.2 DCK memory predicates defined
for the Childsnack domain. . . . . . . . 49

6.3 ATB-DCK-enhanced planning
operator defined for the Childsnack
domain. . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Inference rules defined for the
Childsnack domain. . . . . . . . . . . . . . 51

6.5 ATB-DCK-enhanced PDDL
planning problem defined for the
Childsnack domain. . . . . . . . . . . . . . 51

6.6 Planning operator defined for the
Reconfigurable Machines domain. . 53

6.7 Planning problem defined for the
Reconfigurable Machines domain. . 54

6.8 ATB-DCK defined for the
Reconfigurable Machines domain. . 55

ctuthesis t1606152353 x



Tables

6.1 Test results from solving original
and ATB-DCK-enhanced instances of
the Reconfigurable Machines
problem. . . . . . . . . . . . . . . . . . . . . . . . 56

xi ctuthesis t1606152353



ctuthesis t1606152353



Chapter 1

Introduction

Domain-independent automated planning is a branch of artificial intelligence
that is concerned with finding a sequence of actions that takes a given domain
from a defined initial state to a goal state, i.e., a state or set of states that
fulfill the defined goal criteria. In order to solve a problem using automated
planning, it must first be defined as an automated planning task and then
provided to a domain-independent automated planning engine that can solve
it [1].

While automated planning engines for solving automated planning tasks
grow in popularity, their performance still pales in comparison to algorithmic
methods specifically designed to solve the same types of problems. However,
while algorithmic methods are often restricted to addressing only specific
subsets of conceptually similar problems, domain-independent automated
planning engines are capable of solving any problem that can be defined as
an automated planning task. The flexibility of automated planning engines
has given rise to ongoing research efforts aimed at further improving their
efficiency and effectiveness in solving various computational problems.

One of the key reasons behind the inefficiency of automated planning
engines is the lack of context information they get from planning task specifi-
cations. Unlike algorithmic methods, automated planning engines are often
restricted to working with a limited amount of context information, making
it difficult for them to develop effective problem-solving strategies. As a
result, automated planning researchers are actively exploring ways to provide
domain-independent automated planning engines with additional context
information to help them solve problems more efficiently and to further bridge

1 ctuthesis t1606152353



1. Introduction .....................................
the performance gap between them and algorithms.

A common approach to providing additional context information to au-
tomated planning engines is to directly encode it into the planning task
specification. This additional context information can be called Domain
Control Knowledge (DCK). The aim of many researchers is to make the
DCK planner-independent, so it may be exploited by any standard domain-
independent automated planning engine. DCK can take many forms, but
this thesis focuses on one specific action-centric planner-independent DCK
called Attributed Transition-Based Domain Control Knowledge (ATB-DCK),
recently introduced by Chrpa and Barták [2] who were inspired by their
previous work of Transition-based DCK [3]. Action-centric DCKs provide
more information about defined actions and the relationships between them.
Typically, the aim of action-centric DCK is to limit the number of permissible
actions the automated planning engine can take at each step of the planning
process by modifying actions’ definitions (i.e., planning operators).

ATB-DCK can be represented as a finite-state automaton. Each state of
the automaton is represented by an attribute that holds additional context
information about specific objects substituted for the attribute’s arguments,
e.g., an attribute dck_state(?x) tells the automated planning engine that the
object ?x lies in the state dck_state. Each automaton transition is represented
by a source and a destination ATB-DCK state, a planning operator (that
is typically taken from the original planning domain model), and sets of
constraints and modifiers representing the additional preconditions on the
transition’s applicability and its additional effects, respectively. Apart from
the ATB-DCK states themselves, ATB-DCK defines an additional set of
unique predicates known as DCK memory. Similarly to ATB-DCK states,
DCK memory predicates hold additional context information about specific
objects substituted for their arguments and can be added to ATB-DCK
transitions’ constraints and modifiers. ATB-DCK can be encoded into the
planning task specification by adding newly defined predicates (DCK memory
predicates and predicates encoded from ATB-DCK states) to the planning
domain model, by replacing the original operators with operators encoded
from ATB-DCK transitions, and by modifying the initial state of the planning
problem. The main advantage of ATB-DCK is its simplicity and readability
(doesn’t have to be always true as some domains might produce quite complex
ATB-DCKs) even for non-technical users.

The primary objective of this thesis is to simplify the process of encoding
ATB-DCK into the automated planning task specification represented in
the PDDL description language [4]. The objective can be divided into four
sub-objectives:

ctuthesis t1606152353 2



......................................1. Introduction..1. To design a language for ATB-DCK data representation...2. To design and implement a graphical editor for editing and visualizing
ATB-DCK in the form of a finite-state automaton...3. To design and implement a text editor for ATB-DCK data representation
as a part of the graphical editor...4. To implement the compilation of ATB-DCK data representation into the
PDDL planning task specification.

The secondary objective of this thesis is to specify ATB-DCK in several
domains and compare the performance of automated planning engines in
solving ATB-DCK-enhanced and original planning tasks.

3 ctuthesis t1606152353
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Chapter 2

Attributed Transition-Based Domain
Control Knowledge (ATB-DCK)

In order to correctly design a language for ATB-DCK data representation
and to implement the encoding of ATB-DCK into the automated planning
task specification, it is first necessary to properly define both the planning
task and ATB-DCK. All definitions found in this chapter are directly taken
from the already mentioned paper that introduced ATB-DCK [2].

2.0.1 Planning Task Definition

Below is the definition of the classical planning task. While ATB-DCK should
be theoretically usable even in non-classical automated planning (e.g., tem-
poral planning), current research is primarily focused on its use in classical
planning.

Definition 2.1 (Planning task). A planning task is a pair Π =
(DomΠ, P robΠ) where a planning domain model DomΠ = (PΠ, OΠ) is a
pair consisting of a finite set of predicates PΠ and planning operators OΠ,
and a planning problem ProbΠ = (ObjΠ, IΠ, GΠ) is a triple consisting of a
finite set of objects ObjΠ, initial planning state IΠ and goal GΠ.

Let atsΠ be the set of all atoms that are formed from the predicates PΠ by
substituting the objects ObjΠ for the predicates’ arguments. In other words,
an atom is an instance of a predicate (in the rest of the paper when we use
the term instance, we mean an instance that is fully grounded, i.e., all the
variables are substituted by objects). A planning state is a subset of atsΠ,

5 ctuthesis t1606152353



2. Attributed Transition-Based Domain Control Knowledge (ATB-DCK) ............
and the initial planning state IΠ is a distinguished state. The goal GΠ
is a non-empty subset of atsΠ, and a goal planning state is any state that
contains the goal GΠ.

Each predicate of the planning domain model consists of a unique name
and a list of predicate arguments. Together, they define all possible states of
objects (and all possible relationships between objects) that can be substituted
for their arguments. In some cases, the list of predicate arguments might be
empty to represent a state of the corresponding domain that is not tied to any
objects (e.g., the handempty() predicate from the well-known Blocksworld
domain defines the state where the robotic hand manipulating blocks doesn’t
hold any block at the moment). In those special cases, both the predicate
and its instance (atom) have identical forms.

Each planning state fully describes the overall state of the domain. Only
atoms that are present in the given planning state are considered to be true
in the domain’s overall state, all other atoms are assumed to be false.

Planning Operator

As was already mentioned, ATB-DCK is an action-centric DCK which means
it is primarily focused on actions and the relationships between them. The
action’s applicability in each step of the planning process can be controlled by
modifying its definition. The action’s definition is called the planning operator.

Definition 2.2 (Planning operator). A planning operator
o = (name(o), pre+(o), pre−(o), eff−(o), eff+(o)) is specified such that
name(o) = op_name(x1, ..., xk), where op_name is a unique identifier and
x1, ..., xk are all the variable symbols (arguments) appearing in the operator,
pre+(o) and pre−(o) are sets of predicates representing an operator’s positive
and negative preconditions, respectively, eff−(o) and eff+(o) are sets of
predicates representing an operator’s negative and positive effects, respectively.
Actions are instances of planning operators that are formed by substituting
objects, which are defined in a planning problem, for operators’ arguments as
well as for corresponding variable symbols in operators’ preconditions and
effects. An action a = (pre+(a), pre−(a), eff−(a), eff+(a)) is applicable in
a planning state s if and only if pre+(a) ⊆ s and pre−(a)∩s = ∅. Application
of a in s, if possible, results in a planning state (s \ eff−(a)) ∪ eff+(a).

Similarly to the predicate, the planning operator consists of a unique name
and a list of operator arguments that can be substituted by concrete objects

ctuthesis t1606152353 6



............. 2. Attributed Transition-Based Domain Control Knowledge (ATB-DCK)

defined in the planning problem or by constants defined in the planning domain
model. In addition, it consists of operator preconditions and effects, each
represented by a set of predicates or predicate negations. Negated predicates
represent negative preconditions or negative effects. When a planning operator
is instantiated and turned into the action, all its preconditions and effects
are instantiated (by substituted operator arguments) as well. Therefore,
preconditions and effects of action consist of atoms (or atom negations)
instead of predicates.

Actions play a crucial role in the planning process as they allow automated
planning engines to alter the current planning state in an attempt to reach
a defined goal. For an action to be applicable in the current step of the
planning process, the current planning state must contain all the action’s
positive preconditions and lack all its negative ones. When the action is
applied, the current planning state is stripped of all the action’s negative
effects (if they are present in the current planning state) and extended with
all its positive ones.

Planning Task Solution

Definition 2.3 (Planning task solution). A sequence of actions is a solution,
or a solution plan of a planning task Π if and only if a consecutive application
of the actions from the plan starting in the initial planning state of Π results
in the goal planning state of Π.

Most planning tasks have more than one solution or even an infinite
number of solutions. For example, in the well-known Blocksworld domain, if
the robotic hand, which is manipulating the blocks, grabs one specific block
and then puts it back in the same place, then the hand performed two actions
(grabbing the block and putting it down), but the current planning state is
exactly the same as it was before these two actions were performed. In other
words, one specific planning state can be reached by different sequences of
actions which means that the goal planning state can be reached by different
solution plans. Naturally, the aim of automated planning is to find the most
optimal solution.

Similarly, most planning tasks have more than one possible goal planning
state. Again, let’s use the example from the Blocksworld domain. The goal
of the planning task might be that all blocks defined in the planning problem
need to be stacked in a single tower. In this case, each unique configuration
of blocks forming the single tower satisfies the given goal, thus leading to

7 ctuthesis t1606152353



2. Attributed Transition-Based Domain Control Knowledge (ATB-DCK) ............
different goal planning states in one planning task.

PDDL Planning Task Specification

This thesis works with automated planning tasks that have their specifica-
tions defined in the PDDL description language [4]. PDDL planning task
specifications are divided into two main parts, a planning domain model
and a planning problem. The planning domain model defines object types,
predicates, and planning operators (actions) used in planning tasks corre-
sponding to the given domain. Sometimes, the planning domain model may
even define new constants. A constant is a concrete object which is present in
all planning tasks constructed for the represented domain. Figure 2.1 shows
the truncated version of the PDDL planning domain model defined for the
well-known Blocksworld domain.

Figure 2.1: PDDL planning domain model constructed for the Blocksworld
domain.

Sets of preconditions and effects of a planning operator are specified as con-
junctions of predicates represented by and connectors followed by sequences
of predicates. The keyword not represents a negation of the predicate that
comes after it.

The planning problem defines an initial planning state, a goal, and concrete
objects of a specific planning task. Both the initial planning state and the
goal are formed from atoms that are created from predicates defined in the
planning domain model by substituting their arguments with objects defined
in the planning problem. An example of the PDDL planning problem defined

ctuthesis t1606152353 8



............. 2. Attributed Transition-Based Domain Control Knowledge (ATB-DCK)

for the Blocksworld domain is shown in Figure 2.2.

Figure 2.2: PDDL planning problem constructed for the Blocksworld domain.

The goal of the classical planning task is specified as a conjunction of atoms
represented by the and connector followed by a sequence of predicates.

2.0.2 ATB-DCK Definition

This section formally defines ATB-DCK and all its components. Below is the
definition of ATB-DCK as a whole.

Definition 2.4 (ATB-DCK). An Attributed Transition-based Domain
Control Knowledge (ATB-DCK) is a tuple K = (DomΠ, S, M, T ), where

.DomΠ = (PΠ, OΠ) is a planning domain model, where PΠ is a set of
predicates and OΠ is a set of planning operators.. S is a set of attributed states denoted as ATB-DCK states..M is a set of predicates distinct from PΠ representing a DCK memory.
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2. Attributed Transition-Based Domain Control Knowledge (ATB-DCK) ............
. T is a set of transitions between ATB-DCK states denoted as ATB-DCK

transitions.

For its full representation, ATB-DCK draws data (defined object types,
planning operators and predicates) from the planning domain model of the
original planning task. ATB-DCK also defines its own predicates known as
DCK memory predicates to represent additional context information about
specific objects substituted for the DCK predicates’ arguments (e.g. infor-
mation about open goals of substituted objects or achieved milestones of the
planning process). As previously mentioned, ATB-DCK can be represented
as a finite-state automaton consisting of ATB-DCK states and transitions.
Both the ATB-DCK state and the ATB-DCK transition are properly defined
later in this section. Figure 2.3 shows the example of ATB-DCK created for
the well-known Blocksworld domain.

Figure 2.3: ATB-DCK for the Blocksworld domain.

ATB-DCK is domain-specific, so the same ATB-DCK can be encoded into
different planning tasks that share the same planning domain model.

ATB-DCK State

ATB-DCK state is a core component of ATB-DCK. It defines additional
context information about specific objects substituted for its arguments, e.g.,
the ATB-DCK state goodtower(?x) from the popular Blocksworld domain
informs the automated planning engine that the block ?x is exactly where
it is supposed to be (according to the defined goal of the corresponding
planning task) and thus, it doesn’t have to be further manipulated. The
formal definition of the ATB-DCK state is provided below.

Definition 2.5 (ATB-DCK state). An ATB-DCK state s =
s_id(attr1, ..., attrk) is specified via a unique state identifier s_id and a
list of variable symbols (attributes) attr1, ..., attrk.
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When encoding ATB-DCK into the planning task specification, each ATB-
DCK state is encoded into the predicate and added to the planning domain
model as a new predicate. Therefore, the ATB-DCK state identifier must be
unique even among the identifiers (names) of predicates originally defined
in the domain model of the given planning task. The same applies to DCK
memory predicates.

ATB-DCK Transition

ATB-DCK transitions represent new planning operators replacing the original
operators in the ATB-DCK-enhanced planning task specification. The formal
definition of the ATB-DCK transition is provided below.

Definition 2.6 (ATB-DCK transition). An ATB-DCK transition is a tuple
t = (s, o, C,M, s′), where var(s), var(s′) ∈ S, o ∈ OΠ ∪ {⊥}, C is a set of
constraints, where each constraint takes one of the forms:

. p such that var(p) ∈ PΠ ∪M. ¬p such that var(p) ∈ PΠ ∪M. st:q such that var(q) ∈ S

and M is a set of modifiers, where each modifier takes one of the forms:

.+p such that var(p) ∈M.−p such that var(p) ∈M

Predicates used in the ATB-DCK transition have their arguments substi-
tuted with identifiers of the transition’s arguments, but they might be defined
using different arguments’ identifiers. To take this into account, the term
variant of a predicate was defined. A predicate q is a variant of a predicate
p, denoted as q = var(p), if q is formed from p by renaming its arguments
while preserving their order according to the arguments’ object types.

The transition’s source and destination ATB-DCK states are denoted as
s and s′, respectively. The planning operator assigned to the ATB-DCK
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transition and denoted as o can be either an existing planning operator taken
from the domain model of the original planning task or the so-called empty
operator (denoted as ⊥), which is the operator with no defined arguments,
preconditions, or effects. The set of the transition’s constraints C represents
additional preconditions on the transition’s applicability. Constraints are
represented by predicates (or predicate negations in case of negative con-
straints) either from the planning domain model of the given planning task
or from the DCK memory. They could be even represented by variants of
ATB-DCK states distinct from s and s′. Similarly to transition’s constraints,
the set of transition’s modifiers M represents additional effects of the given
transition. Modifiers can be represented by DCK memory predicates or by
their negations (in case of negative effects).

The same planning operator (may it be an operator from the planning
domain model of the given planning task or the empty operator) can be
assigned to multiple ATB-DCK transitions. In other words, the ATB-DCK-
enhanced planning domain model might contain several modified versions of
one planning operator. Also, there is no limitation on number of transitions
between two ATB-DCK states (or even one state, because self-transitions with
both endpoints being the same state are permitted), so multiple transitions
with exactly the same source and destination states may occur.

ATB-DCK Configuration

Just like the atoms created from predicates defined in the planning domain
model form a planning state of the given planning task, the atoms created
from ATB-DCK states and DCK memory predicates form an ATB-DCK
configuration.

Definition 2.7 (ATB-DCK configuration). Let Π = (DomΠ, P robΠ) be a
planning task, K = (DomΠ, S, M, T ) be an Attributed Transition-based DCK,
and ObjK be a set of problem-specific DCK memory objects. A configuration
Kc of K is a pair Kc = (Sc, M c) such that Sc ⊆ {sc | sc an instance of s ∈ S}
and M c ⊆ {mc | mc an instance of m ∈ M}. Instantiation of both ATB-
DCK states and ATB-DCK memory predicates is done by substituting objects
(defined in ProbΠ and ObjK) for all corresponding variable symbols.

ATB-DCK may use additional object types distinct from the object types
defined in the original planning task. These new object types can be used
in arguments of newly defined predicates (i.e., ATB-DCK states and DCK
memory predicates) or to create new problem-specific DCK memory objects.
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ATB-DCK Transition Applicability

Similarly to planning operators, ATB-DCK transitions have preconditions
on their applicability and effects that can modify both the current planning
state and the current ATB-DCK configuration.

Definition 2.8 (ATB-DCK transition applicability). Let Π = (DomΠ, P robΠ)
be a planning task, K = (DomΠ, S, M, T ) be an Attributed Transition-based
DCK, ObjK be a set of problem-specific DCK memory objects, sΠ be a current
planning state and Ks = (Ss, M s) be a current configuration of K. We say
a transition t ∈ T , where t = (st, ot, Ct,Mt, s′

t), is applicable in sΠ and
Ks with respect to Θ, a substitution from variable symbols appearing in the
elements of t into objects (defined in ProbΠ and ObjK), if and only if:

.Θ(st) ∈ Ss.Θ(ot) is applicable in sΠ (⊥ is always applicable). for each p ∈ Ct it is the case that Θ(p) ∈ sΠ ∪M s. for each ¬p ∈ Ct it is the case that Θ(p) /∈ sΠ ∪M s. for each st:q ∈ Ct it is the case that Θ(q) ∈ Ss

The result of a transition application (if possible) is a new planning state s′
Π

and a new configuration Ks′ = (Ss′, M s′). In particular:

. s′
Π = (sΠ \Θ(eff−(ot))) ∪Θ(eff+(ot)) (for ot = ⊥, s′

Π = sΠ). Ss′ = (Ss \ {Θ(st)}) ∪ {Θ(s′
t)}.M s′ = (M s \ {Θ(p) | −p ∈Mt}) ∪ {Θ(p) | +p ∈Mt}

We also say that a planning state s′
Π and a configuration Ks′ are reachable

from a planning state sΠ and a configuration Ks if and only if there exists
a sequence of transitions (from T) whose consecutive application in sΠ,Ks

(must always be possible) results in s′
Π,Ks′.

For the instantiated ATB-DCK transition to be applicable in the current
step of the planning process, the transition’s source ATB-DCK state must
be part of the current ATB-DCK configuration, the instantiated planning
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operator assigned to the transition must be applicable in the current planning
state, the transition’s positive constraints must be present either in the current
planning state or in the current ATB-DCK configuration, and the transition’s
negative constraints must not be present in the current planning state nor in
the current ATB-DCK configuration.

After the instantiated ATB-DCK transition is applied, the transition’s
source ATB-DCK state is replaced in the current ATB-DCK configuration
by the transition’s destination ATB-DCK state, the instantiated planning
operator assigned to the transition is applied in the current planning state,
and the current ATB-DCK configuration is stripped of all transition’s negative
modifiers and extended with all the positive ones.

2.0.3 Planning Task With ATB-DCK

This section defines the ATB-DCK-enhanced planning task and all its com-
ponents. Below is the definition of the planning task with ATB-DCK as a
whole.

Definition 2.9 (Planning Task With ATB-DCK). A planning task with
ATB-DCK is a tuple ΠK = (DomΠ, P robΠ,K,KI) where DomΠ is a plan-
ning domain model, ProbΠ is a planning problem, K = (DomΠ, S, M, T ) is
an ATB-DCK and KI is an initial configuration of K.

Both the planning task and ATB-DCK have their initial configuration,
which fully describes their initial state over the concrete objects at the start
of the automated planning process. The already established and defined
initial configuration of the planning task is called the initial planning state,
which is represented by atoms formed from predicates defined in the domain
model of the planning task. Similarly, the initial configuration of ATB-DCK
is represented by atoms formed from ATB-DCK states and DCK memory
predicates.

Derivation Of Initial ATB-DCK Configuration

The paper that introduced ATB-DCK [2] presents the method for deriving
the initial configuration of ATB-DCK. Specific atoms forming the ATB-DCK
initial configuration are derived from the so-called inference rules. Inference
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rules are represented by Horn clauses in their implicative form as follows:

Rp(ak1 , ..., akn)⇐ Fp(a1, ..., am)

The head of inference rules Rp(ak1 , ..., akn) represents either a DCK memory
predicate or an ATB-DCK state, e.g., goodtower(?x). The body of inference
rules Fp(a1, ..., am) is a conjunction of literals that can be specified in the
following forms:

. initial state query: I:p(a1, ..., an), e.g., I:on(?x, ?y). goal query: G:p(a1, ..., an), e.g., G:on(?x, ?y). initial DCK memory or ATB-DCK state query: p(a1, ..., an), e.g.,
goodtower(?x). cardinality query: count(c, bi, F (b1, ..., bq)), (1 ≤ i ≤ q), e.g.,
count(?c, ?p,I:waiting(?ch, ?p)) determines how many children are ini-
tially waiting for a sandwich at the fixed place ?p, the desired number is
here denoted as ?c

Initial state and goal queries test the existence of corresponding atoms in
the initial state or goal of the given planning task, respectively. Initial DCK
memory or ATB-DCK state queries test whether the corresponding atoms can
be derived from the defined inference rules. Finally, cardinality queries are
used to determine the number of satisfied formulas (literals or inference rules)
for each instance of their fixed argument bi. In classical automated planning,
numbers (integers) are typically represented by special objects additionally
defined for each used number. Arithmetic operations over the integer objects
can be performed by additionally defined special predicates.

Attributes of inference rule heads, as well as the literals present in the
inference rule bodies, are substituted with concrete objects that are either
defined in the original planning problem or newly defined by ATB-DCK. If
the instantiated inference rule is evaluated as true (i.e., all literals present
in its body are evaluated as true), the rule is deemed satisfied and its head
is encoded into a new DCK memory atom (using the head’s substituted
arguments). All DCK memory atoms encoded from satisfied inference rules
form together the initial ATB-DCK configuration.

If the DCK memory atom can be derived from multiple formulas (inference
rule bodies), i.e., the inference rule bodies can be formed into a single body
represented in a disjunctive normal form (DNF), then the inference rule can
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be split into multiple inference rules sharing the same head while having
different bodies. Below is an example of split inference rules for the derivation
of the goodtower(?x) ATB-DCK state defined for the Blocksworld domain:

goodtower(?x)⇐ I:ontable(?x) ∧ G:ontable(?x)
goodtower(?x)⇐ I:ontable(?x) ∧ freeBot(?x)
goodtower(?x)⇐ I:on(?x, ?y) ∧ G:on(?x, ?y) ∧ goodtower(?y)
goodtower(?x)⇐ I:on(?x, ?y)∧ goodtower(?y)∧ freeBot(?x)∧ freeTop(?y)

Not all inference rules need to be encoded into atoms and added to the
initial configuration of ATB-DCK. Some inference rules, e.g., freeBot(?x)
and freeTop(?x), exist only to simplify bodies of other inference rules as their
possible atoms are not used in any ATB-DCK-enhanced action, so adding
them to the initial ATB-DCK configuration would be redundant.

The initial configuration of ATB-DCK is denoted as KI = (SI , M I) where
SI is a set of initial atoms formed from ATB-DCK states and M I is a set of
initial atoms formed from DCK memory predicates.

ATB-DCK-Enhanced Planning Task Specification

In order to exploit ATB-DCK by domain-independent automated planning
engines, it must be first encoded into the planning task specification. The
paper that introduced ATB-DCK [2] presents the algorithm 1 for encoding
ATB-DCK into the planning domain model of the given planning task.

To summarize the algorithm, the original predicates of the planning task are
extended with predicates defined by ATB-DCK (i.e., DCK memory predicates
and predicates encoded from ATB-DCK states). Additionally, all original
operators are replaced with ones encoded from ATB-DCK transitions. The
algorithm also extends the original object types with object types defined
by ATB-DCK as they are possibly used in arguments of new predicates and
operators. The extension of object types is not specifically shown in the
algorithm, but it is a crucial step of the ATB-DCK encoding process. The
encPred function used in the algorithm encodes an ATB-DCK state into
a uniquely identifiable predicate. ATB-DCK transitions are encoded into
new planning operators by extending preconditions and effects of associated
operators with transitions’ defined constraints and modifiers, respectively. In
addition, a source state of the transition is added to the associated operator’s
preconditions, while a destination state is added to its effects. Arguments of
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Algorithm 1 Encoding ATB-DCK into domain model
Require: DomΠ = (PΠ, OΠ), K = (DomΠ, S, M, T )
Ensure: DomK

Π = (P K
Π , OK

Π)
1: procedure ENCODE_ATB-DCK(PΠ, OΠ, S, M, T )
2: S′ ← {encPred(s) | s ∈ S}
3: P K

Π ← PΠ ∪M ∪ S′

4: OK
Π ← ∅

5: for all t = (s, o, C,M, s′) ∈ T do
6: C1← {p | p ∈ C}
7: C2← {p | ¬p ∈ C}
8: C3← {encPred(q) | st:q ∈ C}
9: M1← {p | +p ∈M}

10: M2← {p | −p ∈M}
11: pre+(ot)← pre+(o) ∪ {encPred(s)} ∪ C1 ∪ C3
12: pre−(ot)← pre−(o) ∪ C2
13: eff+(ot)← eff+(o) ∪ {encPred(s′)} ∪M1
14: eff−(ot)← eff−(o) ∪ {encPred(s)} ∪M2
15: args(ot)← collectArgs(ot)
16: OK

Π ← OK
Π ∪ {ot}

17: end for
18: DomK

Π ← (P K
Π , OK

Π)
19: end procedure

newly formed operators are collected from arguments of all predicates used
in preconditions and effects of given operators, this step is represented by the
collectArgs function. A result of the algorithm is an ATB-DCK-enhanced
planning domain model, denoted as DomK

Π = (P K
Π , OK

Π), where P K
Π is a set

of extended predicates and OK
Π is a set of newly created operators from

ATB-DCK transitions.

The compilation of ATB-DCK into the original planning problem, denoted
as ProbΠ = (ObjΠ, IΠ, GΠ), where ObjΠ is a set of original problem-specific
objects, IΠ is an original initial planning state, GΠ is a defined goal, and
KI = (SI , M I) is an initial ATB-DCK configuration which may use newly
defined ATB-DCK objects denoted as ObjK, is performed as follows:

ProbK
Π = (ObjΠ ∪ObjK, IΠ ∪M I ∪ {encPred(s) | s ∈ SI}, GΠ)

In other words, original problem-specific objects are extended with addi-
tional objects defined by ATB-DCK, and the original initial planning state
is extended with atoms from the initial ATB-DCK configuration. The goal
remains the same. ProbK

Π represents an ATB-DCK-enhanced planning prob-
lem.
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Because the ATB-DCK-enhanced planning task, denoted as Π′ =

(DomK
Π, P robK

Π), shares the same goal with the corresponding original plan-
ning task, it can be provided to domain-independent automated planning
engines to hopefully reach the given goal in a more efficient manner. It
is worth noting that ATB-DCK doesn’t guarantee an improvement in the
efficiency of solving automated planning tasks as it may perform poorly for
some specific domains or specific planning engines.

Solution Of Planning Task With ATB-DCK

After solving the ATB-DCK-enhanced planning task, the automated planning
engine generates the ATB-DCK-enhanced solution plan represented by the
sequence of actions encoded from ATB-DCK transitions. The solution of
the original planning task, represented by the sequence of original actions,
can be extracted from the corresponding ATB-DCK-enhanced solution
plan. Below is the definition of the solution of a planning task with ATB-DCK.

Definition 2.10 (Solution Of Planning Task With ATB-DCK). Let ΠK =
(DomΠ, P robΠ,K,KI) be an ATB-DCK planning task, IΠ be the initial state
of ΠK and T be the set of transitions defined in K. We say that a sequence
of grounded transitions ⟨t1, ..., tn⟩ (from T ) solves ΠK if and only if its
consecutive application starting in IΠ and KI results in a planning state
satisfying the goal defined in ProbΠ.

Grounded ATB-DCK transitions are associated with actions from the
original planning task (or with empty actions). The ATB-DCK transition
is applicable only if the associated action is applicable (an empty action is
always applicable) and if all its additional constraints (including the tran-
sition’s source ATB-DCK state) are satisfied. The additional constraints
can significantly limit the number of applicable actions in each step of the
planning process and thus make the whole planning process much more effec-
tive. Furthermore, the ATB-DCK transition can alter the current planning
state with the effects of its associated action and with its additional modi-
fiers (including the transition’s destination ATB-DCK state). However, the
transition’s additional modifiers are formed only from predicates that are not
part of the original planning task, so the transition’s alteration of the current
planning state doesn’t affect the applicability of original actions. Therefore,
the sequence of actions, representing the solution of the original planning task,
can be obtained from the solution of the ATB-DCK-enhanced planning task
by simply extracting the original actions associated with grounded transitions
(encoded into ATB-DCK-enhanced actions) forming the ATB-DCK-enhanced
solution. Empty actions are omitted from the final solution of the original
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planning task as they are not defined in the original planning domain model
and as their application has no effect on the domain environment.
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Chapter 3

ATB-DCK Data Representation

The aim of this chapter is to design a language for ATB-DCK data represen-
tation, so it can be used by computer programs. Specifically, this chapter
includes data representations of DCK memory predicates, ATB-DCK vari-
ables, ATB-DCK states, and ATB-DCK transitions. Data representations of
inference rules and the planning task specification are described in the later
chapter about the compilation of ATB-DCK into the PDDL planning task.

3.0.1 JSON Data Format

To simplify the process of parsing ATB-DCK data representation and trans-
forming it into data structures of chosen programming language, it was
decided to use the popular JSON (JavaScript Object Notation) text format
[5]. Apart from its simplicity and readability even for non-technical users, the
main advantage of the JSON data format is its broad support across many
programming languages, which typically possess optimized built-in libraries
for its handling.

The JSON data format can be used to represent JSON objects (map
data structures consisting of key-value pairs), arrays (list of values with
allowed duplicates), strings, integer or floating point numbers, boolean values
(true/false), and null values representing unknown or undefined values of any
data types. Both the JSON object and the JSON array may contain values
of any supported data types, including other objects and arrays, which allows
the possible representation of complex hierarchical data structures.
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Figure 3.1 shows the example of JSON representation. All data must be

encapsulated into a single root JSON object and thus enclosed by a pair of
curly braces. The keys of a JSON object are represented by unique (in the
context of a given object) strings and followed by colons separating keys from
their corresponding values. Items of JSON arrays are enclosed in square
brackets, and similarly to key-value pairs of JSON objects, they must be
separated by commas.

Figure 3.1: Example of the JSON data format.

3.0.2 DCK Memory Predicates

DCK memory predicates represent additional predicates defined by ATB-DCK
and used in planning operators of the ATB-DCK-enhanced planning task.
Predicates consist of a unique identifier (name) and a list of predicate argu-
ments. In JSON representation, DCK memory predicates can be represented
by key-value pairs where keys are formed from predicates’ identifiers (names),
and values are specified by arrays of object types corresponding to predicates’
arguments.

Figure 3.2 shows the JSON representation of DCK memory predicates de-
fined for the popular Blockworld domain. The gon(?x−block, ?y−block) pred-
icate provides the planning process with additional information on whether
the given planning task’s goal specifies if the block ?x must be stacked on
the block ?y. The mStacked(?x− block) predicate indicates whether the goal
specifies if the block ?x has to be stacked on any other block at all.

It is possible to represent (define) DCK memory predicates separately from
the actual ATB-DCK data representation, where they are only referenced
using their identifiers.
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Figure 3.2: JSON representation of DCK memory predicates defined for the
Blocksworld domain.

3.0.3 ATB-DCK Variables

ATB-DCK variables are used to correctly map arguments of ATB-DCK states,
ATB-DCK transitions, and transitions’ additional constraints and modifiers
to corresponding objects. In JSON representation, ATB-DCK variables can
be represented as key-value pairs where keys are represented by their unique
identifiers (symbols), and values are specified by identifiers of their object
types.

Figure 3.3 shows the JSON representation of ATB-DCK variables defined
for the Blockworld domain. To define ATB-DCK for the Blocksworld domain,
only two unique block variables are needed.

Figure 3.3: JSON representation of ATB-DCK variables defined for the
Blocksworld domain.
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3.0.4 ATB-DCK States

ATB-DCK states are encoded into predicates and added to preconditions and
effects of planning operators formed from ATB-DCK transitions. Therefore,
similarly to DCK memory predicates, ATB-DCK states can be represented
by key-value pairs where keys are represented by unique predicate identifiers
(names), and values are specified by arrays of predicate arguments already
substituted with ATB-DCK variables.

Figure 3.4 shows the JSON representation of ATB-DCK states defined
for the Blockworld domain. The goodtower(?x) and the badtower(?x) states
indicate whether the placement of the block x satisfies the goal of the corre-
sponding planning task, and thus, whether the block ?x should be further
manipulated. The dck_holding(?x) state is an intermediate state between
the badtower(?x) and the goodtower(?x) states in which the block ?x is cur-
rently held by the robotic hand manipulating objects. The goal of the given
ATB-DCK-enhanced planning task is satisfied only if all blocks defined in the
original planning problem lie in the ATB-DCK state goodtower(?x− block).
Only one of ATB-DCK states can be active (i.e., part of the current planning
state) for the specific block ?x at the same time.

Figure 3.4: JSON representation of ATB-DCK states defined for the Blocksworld
domain.

3.0.5 ATB-DCK Transitions

ATB-DCK transitions consist of their source and destination ATB-DCK states,
associated planning operators, and sets of transitions’ additional constraints
and modifiers. In the data representation of ATB-DCK transitions, already
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defined transitions’ source and destination states can be referenced by their
unique identifiers. Associated operators may also be specified by their unique
identifiers, with an empty string referring to an empty planning operator,
and by arrays of operators’ arguments substituted with ATB-DCK variables.
Similarly to associated operators, transitions’ additional constraints and
modifiers, stored in JSON arrays, can be represented by unique identifiers of
corresponding predicates and by arrays of their arguments substituted with
ATB-DCK variables. Identifiers of constraints’ and modifiers’ corresponding
predicates might be prefixed by a tilde character ( ) representing the negation
of given predicates. All ATB-DCK transitions are stored in a JSON array.

Figure 3.5 shows the JSON representation of the specific ATB-DCK tran-
sition defined for the Blockworld domain. The transition between the
dck_holding and the goodtower ATB-DCK states is associated with the
put_down planning operator having the ATB-DCK variable ?x as its only
argument. It has only one additional constraint and no modifiers. The
additional constraint represents the negation of the DCK memory predicate
mStacked with the ?x ATB-DCK variable as its argument.

Figure 3.5: JSON representation of the ATB-DCK transition defined for the
Blocksworld domain.

The transition specifies that the block ?x can be moved from the
dck_holding state (a state in which the block is held by a robotic hand)
to the goodtower state (a state in which the block’s placement satisfies the
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planning task’s defined goal) by applying the associated operator put_down
only if the planning task’s goal doesn’t specify whether the block ?x must be
stacked on any other block.
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Chapter 4

ATB-DCK Graphical Editor

This chapter describes the design and implementation of a graphical editor
for editing and visualizing ATB-DCK, both in the form of a finite-state
automaton and its JSON data representation.

4.0.1 PyQt

The graphical editor was developed using PyQt [6]. PyQt is a popular Python
binding for the cross-platform C++ framework called Qt. The Qt framework
is used for creating multiplatform graphical user interfaces, and PyQt provides
Python API (Application Programming Interface) to allow the usage of the
Qt framework through Python programming language [7].

4.0.2 User Interface

This section describes all main UI (User Interface) components of the ATB-
DCK graphical editor. Figure 4.1 shows the main window of the graphical
editor with almost all described UI components being visible (except for the
JSON text editor). Most UI components of the ATB-DCK graphical editor
can be resized by grabbing and dragging their borders with a mouse.
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Figure 4.1: Main window of the ATB-DCK graphical editor.

Toolbar Options

The toolbar of the ATB-DCK graphical editor, shown in Figure 4.2, offers
several actions. The "Open" action allows the user to import the existing
JSON representation of ATB-DCK into the graphical editor and visualize the
imported ATB-DCK as a finite-state automaton. The "Save" action allows
the user to save the JSON representation of ATB-DCK extracted from the
editor’s data to a chosen location. The rest of the toolbar actions are used to
interact with a scene and are further specified during the description of the
UI component representing the scene.

Figure 4.2: Toolbar of the ATB-DCK graphical editor.

Scene

The scene is the main UI component of the ATB-DCK graphical editor.
Its purpose is to design and visualize the representation of ATB-DCK as a
finite-state automaton. The scene UI component is shown in Figure 4.3.

The user can interact with the scene through modes (actions) defined in
the graphical editor’s toolbar. The "Grab" mode allows the user to move the
viewport of the scene (visible part of the scene), so the user can reach the
whole scene no matter the size of the viewport. The "Select" mode can be
used to select scene objects to edit their properties or to move them across
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Figure 4.3: Scene of the ATB-DCK graphical editor.

the scene. The "New State" mode allows the user to create a new state on
a position of the scene where the user clicked with his mouse. The "New
Transition" mode can be used to create a new transition between two states
(or one state in case of self-transitions) the user clicked on. The direction of
a new transition is determined by the order in which the user clicked on two
states. Finally, the "Delete" mode allows the user to remove scene objects
from the scene by clicking on them.

The scene can be toggled into the JSON text editor, which is described
later in this section.

Scene Hierarchy

The scene hierarchy, illustrated in Figure 4.4, displays all states and transitions
currently present in the scene in a tree-like structure. Its main purpose is to
allow the user to select scene objects from the simple menu without having
to find them in the scene.
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Figure 4.4: Scene hierarchy of the ATB-DCK graphical editor.

Inspector

The inspector displays editable properties of selected scene objects. Its layout
is changed according to the current selection. Its default view, shown in
Figure 4.5, is displayed when nothing is selected.

Figure 4.5: Inspector of the ATB-DCK graphical editor when nothing is selected.

Figure 4.6 shows the appearance of the inspector when the state is selected.
The state properties consist of the state name, which is used to represent
the state in the scene hierarchy, and the state attribute, which represents
the predicate associated with the given ATB-DCK state. The state attribute
consists of a unique identifier (name) and a list of its arguments represented
by identifiers of ATB-DCK variables defined in the "Variables" UI component,
which is described later in this section.

Figure 4.7 shows the appearance of the inspector when the transition is
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Figure 4.6: Inspector of the ATB-DCK graphical editor when a state is selected.

selected. Similarly to states, the transition has the name property representing
the given transition in the scene hierarchy. Additionally, the transition
properties include the property of the associated operator and properties
corresponding to the ATB-DCK transition’s constraints and modifiers. The
transition’s associated operator consists of a unique identifier and a list of
ATB-DCK variables representing its arguments. The transition’s constraints
and modifiers are specified by identifiers of their corresponding predicates, by
lists of ATB-DCK variables representing arguments of their corresponding
predicates, and by boolean values indicating whether the corresponding
predicates are negated or not.

Figure 4.7: Inspector of the ATB-DCK graphical editor when a transition is
selected.

All text fields are validated towards corresponding regular expressions.

31 ctuthesis t1606152353



4. ATB-DCK Graphical Editor...............................
E.g., the regular expression for text fields representing either predicate or
operator identifiers is structured as follows: ^[a-zA-Z]+([-]*\w+)*$. This
regular expression allows non-empty values that contain only alphanumeric
characters, hyphens (-), or underscores (_). Moreover, values matching
this regular expression must start with a letter from the alphabet and can’t
end with a hyphen. The use of such regular expressions makes all values
defined in the ATB-DCK graphical editor syntactically compatible with
PDDL description language [4] that is used to represent the planning task
specification. Text fields representing arguments of either predicates or
operators accept sequences of ATB-DCK variable identifiers separated by
commas as their values. In this case, apart from the validation of text field
values with the corresponding regular expression, each variable identifier must
correspond to the existing ATB-DCK variable defined in the "Variables" UI
component.

The validation process for the specific text field is performed every time
the text field is edited, and the UI widget corresponding to the given text
field loses focus (i.e., the user clicks away from the widget). If the validation
is deemed unsuccessful, all changes to the text field are reverted to its last
valid value, and the message informing the user about the invalid input pops
up on the main screen. An example of such unsuccessful validation is shown
in Figure 4.8.

Figure 4.8: Error popup message - invalid input.

Variables

The "Variables" UI component, shown in 4.9, is where ATB-DCK variables are
defined. ATB-DCK variables consist of unique identifiers and object types.
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Figure 4.9: UI component "Variables" of the ATB-DCK graphical editor.

All text fields corresponding to properties of ATB-DCK variables use the
same validation process already specified in the description of the inspector
UI component. To ensure the uniqueness of variable identifiers, the validation
process can be extended with an additional validation step that checks whether
the ATB-DCK variable with the newly defined identifier already exists.

JSON Text Editor

The JSON text editor displays the ATB-DCK data representation. The user
can access the text editor via the tab menu located on the widget containing
the scene UI component. When the text editor is accessed and visible, all
other UI components described in this section (except the toolbar) have their
visibility toggled off (i.e., they become hidden). Because the scene itself is no
longer visible, all toolbar options interacting with it are also hidden. The UI
component of the JSON text editor is shown in Figure 4.10.

The text editor displays an enhanced version of ATB-DCK. This enhanced
version includes the ATB-DCK graphical editor’s data, which are not required
during the compilation of ATB-DCK into the PDDL planning task but are
used to correctly reconstruct ATB-DCK as a finite-state automaton inside
of the graphical editor. For example, these data may include positions (x
and y coordinates) of individual states in the scene or names of states and
transitions representing corresponding objects in the scene hierarchy. The
ATB-DCK graphical editor exports the enhanced version of ATB-DCK data
representation but is able to import data and recreate finite-state automaton
even from unenhanced versions. The recreation of the finite-state automaton
from the unenhanced version of ATB-DCK data representation places all states
at the same position in the middle of the scene and lets the user rearrange
them himself. To easily include or exclude the graphical editor’s data from
the actual ATB-DCK data representation, they are specified separately under
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Figure 4.10: JSON text editor of the ATB-DCK graphical editor.

a new key ("editor_data") of the JSON root object instead of being injected
directly into data representations of ATB-DCK states and transitions.

The visual distinction of JSON syntactical elements is achieved by using
different colors for different groups of elements. Elements are sorted into
such groups according to regular expressions they match. E.g. there might
be different syntactical groups for curly braces, square brackets, strings, and
numbers.

4.0.3 Communication Between UI Components

In the implementation, the root of the ATB-DCK graphical editor is its main
window which displays and manages all UI components. It also serves as
the mediator in communication between particular UI components. Such
communication occurs when changes in one UI component affect other com-
ponents. For example, if the user selects a scene object, the scene hierarchy
should highlight the menu item corresponding to the given object, and the
inspector should display the selected object properties. Simply put, the edited
UI component informs the main window about the changes that occurred,
the main window redirects this information to affected UI components, and
said components then perform relevant actions.
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For communication between individual UI components (widgets), the Qt
framework introduces so-called signals and slots [8]. Signals are emitted
in reaction to particular events, e.g., the selection of a scene object or the
editing of a text field, and can be intercepted by connected functions called
slots. The Qt framework offers built-in signals for many events but also
allows the creation of custom ones. For communication between main UI
components, the ATB-DCK graphical editor uses a combination of built-in
and custom signals, which are intercepted by slots defined in the main window
and connected to corresponding signals. E.g., when a scene object is selected,
the corresponding signal is emitted and intercepted by the connected slot
defined in the main window. This connected slot receives a reference (from the
emitted signal) to the selected object and passes it to both the scene hierarchy
and the inspector UI components. The scene hierarchy highlights the menu
item corresponding to the selected object (represented by its reference), and
the inspector displays its properties.

4.0.4 Scene Geometry

This section describes the geometry used to represent ATB-DCK as a finite-
state automaton.

Scene Coordinate System

The Qt framework encloses all widgets, including the scene and all the scene
items, with so-called bounding rectangles. The bounding rectangle determines
the dimensions of an enclosed widget. The origin of its local coordinate system
lies in its top-left corner. From there, the x coordinate increases towards the
right, and the y coordinate increases downward, so the x-axis of the bounding
rectangle’s local coordinate system can be represented by a line connecting its
top-left corner with the top-right corner, and the y-axis by a line connecting
its top-left corner with the bottom-left corner [9]. However, it’s worth noting
that the widget’s size and position are ultimately managed by the Qt layout
system, which can adjust them independently of the bounding rectangle. As
a result, the axes of the widget’s local coordinate system may not always
align with the axes of the corresponding bounding rectangle’s local coordinate
system [10]. Let’s assume that for the scene of the ATB-DCK graphical
editor, they align. The scene coordinate system, which is basically the two-
dimensional Cartesian coordinate system with the x-axis oriented to the right
and the y-axis oriented downward, is shown in Figure 4.11.
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Figure 4.11: Scene coordinate system.

State Geometry

States of the finite-state automaton are represented by ellipses. Same as the
scene itself, each ATB-DCK state is enclosed with its own bounding rectangle.
The geometry of a state is illustrated in Figure 4.12.

Figure 4.12: Geometry of a state.

ctuthesis t1606152353 36



............................... 4. ATB-DCK Graphical Editor

The state’s position in the scene is determined by the position of its local
coordinate system’s origin, denoted as Spos. In the middle of the ATB-DCK
state lies the text formed from the state’s associated attribute. The text
position, denoted as Tpos, can be computed by subtracting half the text’s
width from the x coordinate of the state center, denoted as Scenter, and half
the text’s height from its y coordinate. The text position is recomputed
every time the text is changed or the corresponding state is moved. If the
text doesn’t fit the ellipse representing the ATB-DCK state, it is displayed
shortened and suffixed with three dots to indicate a truncated text.

Transition Geometry

In the implementation, individual transitions of the finite-state automaton
are assigned with their shape. This shape determines how they are drawn
between their source and destination states. The main advantage of this
approach is that all ATB-DCK transitions can share a single implementation
while being drawn differently according to their assigned shape, which can be
dynamically swapped during runtime.

Figure 4.13: Geometry of a line transition.

The line shape is represented by a directed line segment connecting two
ATB-DCK states. Figure 4.13 visualizes the construction of a line transition.
The line segment connecting the centers of two ATB-DCK states (denoted
as S1 and S2) has exactly one intersection point with each state. These
two intersection points (denotes as P1 and P2) are the endpoints of a newly
created line transition. To visualize the direction of the given transition,
an arrowhead is drawn at its computed destination endpoint P2. The text
formed from the transition’s associated operator is placed above the center of
the transition line denoted as Pmid. The text center T lies on a perpendicular
line passing through the point Pmid at the chosen distance from the transition
line. Positions and rotations of both the transition and the text are constantly
updated whenever corresponding states are moved. The text can also be
manually repositioned if the user is not fully satisfied with its placement.
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Line transitions are sufficient only if a finite-state automaton can be

represented as a simple directed graph (i.e., a graph with at most one edge
between the same pair of vertices and no self-loops on a single vertex).
However, ATB-DCK supports multiple transitions (edges) between the same
pair of states (vertices) as well as multiple self-transitions (self-loops) on a
single state (vertex). Therefore, to avoid overlapping transitions between two
states, a curved transition shape illustrated in Figure 4.14 is introduced.

Figure 4.14: Geometry of a curved transition.

To construct a curved transition, an isosceles triangle (i.e., a triangle with
at least two equally long sides), defined by the centers of two ATB-DCK states
(denoted as S1 and S2) and some point P1, is created. The dimensions of the
triangle are determined by the size of the angle α representing the triangle’s
two internal angles located at points S1 and S2. The size of the α angle can be
arbitrarily chosen. An intersection point of the transition’s source state and
the triangle’s side between vertices S1 and P1 is denoted as P0 and represents
the start of the curved transition. The end of the curved transition, denoted as
P2, is represented by an intersection point of the transition’s destination state
and the triangle’s side between vertices S2 and P1. The curved transition is
then constructed as a quadratic Bézier curve defined by points P0, P1, and P2,
with an arrowhead representing the curve direction drawn at its destination
point P2. Such quadratic Bézier curve can be defined by the following function:

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2, 0 ≤ t ≤ 1

The function B returns a point on the curve according to its parameter
t. The center of the Beziér curve, denoted as Pmid, equals B(0.5). The text
center T can lie anywhere on the line passing through points P1 and Pmid. The
described construction of a curved transition allows two more non-overlapping
transitions between the same pair of ATB-DCK states. It means that the
finite-state automaton representing ATB-DCK in the ATB-DCK graphical
editor can be constructed with at most three transitions (one line transition
and two curved transitions) between each pair of different states. In the
future development, to allow the representation of more than three different
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transitions between the same ATB-DCK states, a "super transition" visually
specified by a single transition but holding properties of several ATB-DCK
transitions could be introduced.

Figure 4.15: Geometry of a self-transition.

The self-transition shape is used by self-transitions specified on a single
ATB-DCK state. Its construction is illustrated in Figure 4.15. The
self-transition’s source and destination endpoints can be found by creating a
right triangle defined by points S, P0, and P3. Line segments between points
S and P0 and points S and P3 represent the semi-major and semi-minor axes
of the ellipse representing the corresponding state, respectively. Point S is the
center of the ellipse, point P0 defines the start of the self-transition, and point
P3 represents its end. The self-transition is constructed as a cubic Bézier
curve (with an arrowhead drawn at its destination point P3) which allows
rounder shapes than its quadratic counterpart. So far, only two of the four
points that define the cubic Bézier curve have been specified. Rest can be
found by creating an isosceles trapezoid with the line segment between points
P0 and P3 as one of its bases (parallel sides of the trapezoid). An isosceles
trapezoid is any trapezoid with equally long legs (non-parallel sides of the
trapezoid). The dimensions of the constructed trapezoid are determined
by the size of the angle β representing the trapezoid’s two internal angles
located at points P0 and P3 and by the length of the trapezoid’s legs. Both
these values can be arbitrarily chosen. A cubic Bézier curve defined by all
vertices of the trapezoid denoted as P0, P1, P2, and P3 can be represented by
the following function:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P2, 0 ≤ t ≤ 1
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As with the quadratic Bézier curve, the center of the cubic Bézier curve,

denoted as Pmid, is equal to B(0.5). The text center T can lie anywhere on
the line passing through the point Pmid and the center of the trapezoid’s base
between its vertices P1 and P2. Self-transitions could be theoretically visual-
ized in each "corner" of the ATB-DCK state, so one state could potentially
hold four different self-transitions. For better readability of the finite-state
automaton, the number of allowed self-transitions on a single ATB-DCK state
is limited to three. The already mentioned concept of "super transitions"
could be used for the specification of more than four self-transitions.
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Chapter 5

Compilation Of ATB-DCK Into PDDL
Planning Task

This chapter describes the implementation of the compilation process for
encoding ATB-DCK into the PDDL planning task. The compilation process
accepts the following components as input:

. planning task specification represented in the PDDL description language. ATB-DCK data representation specified in JSON data format. list of DCK memory predicates specified in JSON data format. list of inference rules for the derivation of new initial atoms enriching
the initial planning state of the planning task

The aim of the compilation process is to merge all these components into
an ATB-DCK-enhanced planning task specification represented in the PDDL
description language and extract a solution plan for the originally defined
planning task. To achieve this, all components of the compilation process
must first be data-represented so they can be parsed by computer programs
and transformed into data structures of the corresponding programming
language. During the compilation process, those data structures are merged
and modified into a desired form which is then transformed into a PDDL
data representation of the ATB-DCK-enhanced planning task specification.
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5.0.1 Tarski

Tarski [11] is a Python library designed to represent and manipulate auto-
mated planning tasks. Tarski even possesses a parser for a PDDL language
which transforms the PDDL planning task into Tarski’s internal data struc-
tures, which can be modified through the Python programming language [7].
The parser can’t handle most features introduced in newer PDDL versions
(e.g., numeric fluents) but works well for classical planning tasks. To encode
ATB-DCK into a PDDL planning task, the compilation process can modify
Tarski’s data structures using data from Python representations of ATB-DCK,
DCK memory predicates, and satisfied inference rules.

5.0.2 Data Representation Of Inference Rules

The remaining component of the compilation process whose data representa-
tion wasn’t yet specified is the component that defines inference rules.

Answer Set Programming

Answer Set Programming (ASP) [12], semantically based on the logic pro-
gramming [13], defines a set of parametrizable rules and returns only the
satisfied ones as a solution (answer set). Moreover, simple ASP rules can be
specified as Horn clauses in their implicative forms represented by their head
and a body formed from a conjunction of literals. If both the representation
of ASP rules and the ASP solution are compared to the definition and the
purpose of inference rules, it could be observed that ASP perfectly aligns
with the representation and the satisfiability determination of inference rules.
Figure 5.1 shows the ASP data representation of inference rules defined for
the Blocksworld domain.

Literals prefixed with "i_" correspond to atoms defined in the initial
planning state of the original planning task, and literals prefixed with "g_"
correspond to atoms defined in the planning task’s goal. A satisfied rule head
is turned into an atom and added to the initial planning task if it corresponds
either to the ATB-DCK state (goodtower, badtower) or to the DCK memory
predicate (gon, mStacked). Otherwise, it is ignored and serves only to
simplify bodies of other inference rules. Inference rule bodies of freeBot and
freeTop consist of two negative literals and one undefined literal block. The
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Figure 5.1: ASP data representation of inference rules defined for the Blocksworld
domain.

block literal represents a fact (i.e., a rule with no body that always evaluates
to true). Facts are created for each object defined in the original planning
task from the object’s type and identifier as follows: object_type(object_id).
All facts are added to the given ASP problem during the compilation process
programmatically, so they are not part of the original ASP problem, not even
if they are referenced from bodies of other inference rules. In this example,
the presence of block literals is logically redundant but syntactically required,
because all ASP rule bodies must be specified with at least one non-negative
literal.

Clingo

Clingo is a solver for ASP written in C++ [14], which provides APIs for
different programming languages, including Python, via a Python package
called "clingo" [15] that provides bindings to the C++ library. The "clingo"
Python API can be used to create and solve ASP problems using the Python
programming language. The API can be further simplified by the "clorm"
Python library [16] which provides developers with an intuitive Object Re-
lational Mapping (ORM) style interface for communication with the Clingo
solver. With the "clorm" library, developers can manage ASP problems using
Python objects and methods.
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5.0.3 Compilation Process

Once all components of the compilation process are transformed into data
structures of chosen programming language (Python in this case), the original
PDDL planning task specification can be programmatically modified into its
ATB-DCK-enhanced version using data from other components.

Figure 5.2: ATB-DCK-enhanced PDDL planning domain model constructed for
the Blocksworld domain.

The compilation process starts with parsing the original PDDL planning
task specification using the Tarski framework. Next, it parses data repre-
sentations of ATB-DCK and DCK memory predicates, both specified in the
JSON data format, using Python’s built-in library for encoding and decoding
the JSON texts [17]. The PDDL planning domain model is programmatically
modified with data from ATB-DCK and DCK memory representations ac-
cording to the algorithm 1, defined in the theoretical section 2.0.3 about the
compilation of ATB-DCK into the planning task specification, for encoding
ATB-DCK into the planning domain model of the corresponding planning
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task. Figure 5.2 illustrates a truncated version of the ATB-DCK-enhanced
PDDL planning domain model defined for the Blocksworld domain.

All objects and atoms defined in the planning problem are turned into facts
and programmatically added to the representation of inference rules. Facts
formed from atoms of the initial planning state are prefixed with "i_" while
facts formed from atoms defined in the goal are prefixed with "g_". The
corresponding ASP problem yields the sequence of satisfied rules (answer set)
as a solution. All relevant satisfied rules are turned into atoms and added to
the initial state of the original planning task. The planning problem might
even be extended with some additional objects which can be yet undefined
but present in arguments of some atoms formed from satisfied rules. An
example of the ATB-DCK-enhanced PDDL planning problem defined for the
Blocksworld domain is shown in Figure 5.3.

Figure 5.3: ATB-DCK-enhanced PDDL planning problem constructed for the
Blocksworld domain.

Solution Plan Extraction

Finally, the fully modified PDDL planning task specification can be provided
to chosen domain-independent automated planning engine that solves the
ATB-DCK-enhanced planning task and generates its solution plan. The
solution plan of the ATB-DCK-enhanced planning task is a sequence of
actions that are enhanced either from original or empty actions. Extraction of
the original planning task solution from the ATB-DCK-enhanced solution can
be performed by mapping all enhanced actions to their original counterparts.
Empty actions are naturally omitted from the final solution plan of the
original planning task. A recipe for such mapping can be constructed during
the process of encoding ATB-DCK into the planning domain model of the
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original planning task. Figure 5.4 shows an example of mapping between
planning operators defined for the Blocksworld domain.

Figure 5.4: Mapping of ATB-DCK-enhanced planning operators to original ones
defined for the Blocksworld domain.

Each row of the planning operators’ mapping consists of three values.
The first and the second value are identifiers of the ATB-DCK-enhanced
planning operator and the corresponding original operator, respectively. The
third value is the number of the original operator’s arguments. This number
determines how many arguments (taken from the beginning of the argument
list) of the ATB-DCK-enhanced planning operator, which often has a higher
number of arguments, need to be mapped to arguments of the corresponding
original operator. It means that both the enhanced and the original planning
operator must have the same order of arguments (apart from additional
arguments of the enhanced operator appended to the end of the argument
list) to be correctly mapped. An example of the solution plan extraction for
the original planning task of the Blocksworld domain is shown in Figure 5.5.

Figure 5.5: Plan extraction from the ATB-DCK-enhanced solution generated
for the planning task of the Blocksworld domain.
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Chapter 6

Experimental evaluation

The thesis has already established ATB-DCK for the Blocksworld domain
and utilized it as a reference example. The aim of this chapter is to specify
ATB-DCK for two more domains with unique characteristics and to evaluate
the performance of solving ATB-DCK-enhanced planning tasks as compared
to solving the original ones.

6.0.1 Childsnack

The Childsnack domain describes an environment in which sandwiches are
made and served to children waiting on them. Some children might be allergic
to gluten, so the sandwiches served to gluten-allergic children must be made
from gluten-free ingredients. Sandwiches are made in the kitchen, put on a
tray, and delivered to children waiting on them in groups at specific tables.
There are no imposed constraints on the maximum capacity of trays, so all
sandwiches, no matter their number, could be theoretically placed on a single
tray. Therefore, the most efficient way of solving this task would be to first
make all ordered sandwiches, then put them all on a single tray, and finally
deliver them to all groups of children waiting at specific tables. The guidance
for domain-independent planning engines toward the optimal solution could
provide ATB-DCK defined for the Childsnack domain and shown in Figure
6.1.

The process of solving the Childsnack problem using this ATB-DCK
first chooses a single tray (it makes defining more than one tray redun-
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Figure 6.1: ATB-DCK defined for the Childsnack domain.

dant) that will be used to transport all prepared sandwiches to the wait-
ing children. This tray is put into the make_gluten_free(?t) ATB-DCK
state where ?t corresponds to the substituted tray. In this state, the pro-
cess checks the number of ordered and yet unprepared gluten-free sand-
wiches. If the number is higher than zero, then a new gluten-free sand-
wich is made, the number of unprepared sandwiches is decreased, and
the tray is moved to the done_gluten_free(?s, ?t) ATB-DCK state where
?s corresponds to a newly created sandwich. From there, the prepared
sandwich can only be put on the tray, which moves the tray back to the
make_gluten_free(?t) state. When all ordered gluten-free sandwiches are
finished (i.e., the number of unprepared gluten-free sandwiches is equal to
zero) and put on the tray, then the tray is moved through an empty transition
to the make_normal(?t) ATB-DCK state. The process of preparing normal
sandwiches is equivalent to the process of preparing gluten-free sandwiches. In-
stead of states make_gluten_free(?t) and done_gluten_free(?s, ?t), states
make_normal(?t) and done_normal(?s, ?t) are used. After the preparation
of all ordered normal sandwiches, the tray is moved through another empty
transition into the final ATB-DCK state serve(?t). In this state, the tray
is being moved between tables, and all sandwiches from the tray are served
among the waiting children. The process of solving the Childsnack problem
ends once all children are served.

As is apparent from its description, ATB-DCK defined for the Childsnack
domain works with numbers (e.g., a number of ordered gluten-free sandwiches)
which influence the applicability of certain ATB-DCK-enhanced actions. The
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lowest number is obviously zero and the highest number is the maximum
from the number of ordered gluten-free sandwiches, the number of ordered
normal sandwiches, and the number of waiting children at specific tables.
The process of solving the ATB-DCK-enhanced Childsnack problem uses all
integers between the lowest and the highest defined numbers as all numbers
are continuously decreased until they are equal to zero (e.g., the number
of unprepared gluten-free sandwiches is decreased by one every time a new
gluten-free sandwich is made, and once it is equal to zero, the solving process
is moved into the step of preparing normal sandwiches). Therefore, the only
arithmetic operation used over these numbers is subtraction by one. Because
the usage of numbers in the ATB-DCK-enhanced Childsnack problem is very
simple, they can be handled in a classical planning fashion where each number
is represented by a new object of a newly defined object type (e.g., count
or int), and where all operations over integer objects are performed using
newly defined predicates. DCK memory predicates defined for the Childsnack
domain are shown in Figure 6.2.

Figure 6.2: DCK memory predicates defined for the Childsnack domain.

The predicates mGlutenFreeS and mNormalS specify numbers (repre-
sented by objects of the count object type) of ordered but yet unprepared
gluten-free and normal sandwiches, respectively. The mToServeS predicate
specifies the number of children waiting to be served at the specific table
substituted for the predicate’s argument of the place object type. The next
predicate specifies all pairs of adjacent integers (e.g., next(0, 1), next(1, 2),
next(2, 3), ...) from the lowest to the highest number used in the correspond-
ing ATB-DCK-enhanced planning task. The next predicate is used for the
arithmetic operation of subtraction by one. Finally, the min predicate speci-
fies the lowest defined number, which is zero. The usage of these predicates
can be observed in the ATB-DCK-enhanced planning operator shown in
Figure 6.3.

The planning operator defines an action for making the gluten-free sandwich.
It is constructed from the ATB-DCK transition between make_gluten_free
and done_gluten_free ATB-DCK states. This transition is applicable only
if the number of yet unprepared sandwiches (held by the mGlutenFreeS
predicate) is higher than zero. That is represented by two planning operator
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Figure 6.3: ATB-DCK-enhanced planning operator defined for the Childsnack
domain.

preconditions specified by the predicate mGlutenFreeS(?c2) and the negated
predicate min(?c2). If the count object substituted for the ?c2 argument
is held by the min atom, then the number of yet unprepared sandwiches
is equal to zero, which means that in the current planning state, the ATB-
DCK transition is not applicable. The precondition represented by the
predicate next(?c1, ?c2) specifies the count object substituted for the ?c1
argument, which in the planning operator effects decreases the value held by
the mGlutenFreeS atom by one. The value of the mGlutenFreeS atom is
decreased by replacing the current mGlutenFreeS atom holding the value
?c2 with the mGlutenFreeS atom holding the value ?c1.

Figure 6.4 shows the ASP representation of inference rules defined for the
Childsnack problem. Rules for DCK memory predicates mGlutenFreeS,
mNormalS, and mToServeS are represented as cardinality queries, also
called predicate counters. Cardinality queries are already defined in the section
2.0.3 about the derivation of the initial ATB-DCK configuration. In this case,
the mGlutenFreeS and the mNormalS inference rules compute the initial
number of all children waiting for gluten-free and normal sandwiches (i.e., the
number of waiting atoms defined in the initial planning state and attributed
with gluten-allergic and healthy children), respectively. The mToServeS
predicate counter computes the initial number of waiting children at each
specific table. Inference rules min and max compute the lowest and the
highest number, which will be used in the corresponding planning task. The
rule count defines a new count object for each number between numbers held
by min and max satisfied rules, while the next rule defines all pairs of newly
defined count objects holding adjacent integer values. Finally, the last rule
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specifies that only a single instance of the make_gluten_free rule, attributed
with a chosen tray, can be satisfied and turned into the corresponding atom.

Figure 6.4: Inference rules defined for the Childsnack domain.

Figure 6.5 shows an example of the ATB-DCK-enhanced planning problem
defined for the Childsnack domain. Identifiers of count objects are suffixed
with an integer value they represent.

Figure 6.5: ATB-DCK-enhanced PDDL planning problem defined for the Child-
snack domain.

6.0.2 Reconfigurable Machines

The Reconfigurable Machines domain describes a simplified environment of
the Reconfigurable Manufacturing System (RMS) utilizing reconfigurable
machines known as Reconfigurable Machine Tools [18]. Reconfigurable Ma-
chine Tool (RMT) consists of machine-compatible operational modules which
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can be removed, added, or adjusted to change the RMT’s functionality or
its effectiveness in performing a particular task. Each configuration of the
operational modules on a single RMT might be suitable for different tasks.
Therefore, a single RMT might be able to perform different operations, which
makes RMS highly responsive and flexible in satisfying customers’ diverse
and volatile demands.

Planning tasks of the Reconfigurable Machines domain are defined as task
scheduling problems. Each planning task defines a list of reconfigurable
machines (RMTs), a list of machine configurations, and a list of tasks that
must be processed. All machines can be configured to one or more defined
configurations. RMTs might be of various types, and thus, two different
machines can be configured to two different sets of configurations. Each
machine configuration is capable of performing a set of defined tasks. Different
machine configurations might be suitable for different sets of tasks, or they
can be designed to perform the same tasks with varying efficiency. Each task
specifies its release time (i.e., a time from which the processing of the task can
start) and deadline (i.e., a time in which the task must be already finished).
All operations (tasks processing and machines reconfiguration) take some
time (the duration of the operation) and some amount of resources (the cost
of the operation). The goal of the planning process is the completion of all
defined tasks in their specified time frames while attempting to minimize the
total cost of all performed actions present in the solution plan.

Similarly to the Childsnack domain, the Reconfigurable Machines domain
also works with numbers (e.g., costs of operations or tasks’ release times and
deadlines). However, the complexity of utilizing numbers in the Reconfigurable
Machines domain is much higher. Used integers are no longer adjacent to each
other, and the simple arithmetic operation of subtraction by one is replaced
by the addition of arbitrarily sized numbers. Thus, the use of special objects
for each used number is no longer feasible. To represent non-trivial numerical
tasks, classical automated planning can be enhanced by so-called numeric
fluents. Numeric fluents, introduced by the newer PDDL version 2.1 [4], are
special functions similar to predicates, which can hold any arbitrarily chosen
number (e.g., release times and deadlines of defined tasks or financial costs
of particular operations). The time aspect of the task scheduling problem
could be typically captured by defining the problem as a temporal automated
planning task. Temporal planning allows the use of so-called durative actions,
also introduced by PDDL 2.1 [4], with specified durations and the ability
to capture their possible concurrency. The solution plan then includes time
frames of the planning process in which were durative actions performed.
However, there is no easy (without the need for external preprocessing) and
widely supported way of satisfying tasks’ deadlines using temporal automated
planning. Therefore, for demonstration purposes, a purely numerical approach
of representing time in the planning process is used instead. Figure 6.6 shows
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the PDDL representation of the process_task planning operator defined
for the Reconfigurable Machines domain, demonstrating the use of numeric
fluents in the automated planning task.

Figure 6.6: Planning operator defined for the Reconfigurable Machines domain.

The numeric fluent machine-time tracks the currently elapsed time since
the beginning of the planning process for all machines substituted for the
argument ?m. At the beginning of the planning process, it is assigned a
value of zero. After that, it is increased in the effects of each performed
action (performed by the corresponding machine ?m) by the action’s duration.
The main purpose of the machine-time numeric fluent is to ensure that all
time constraints (i.e., release times and deadlines) imposed on defined tasks
are satisfied. A machine ?m configured to a machine configuration ?c can
perform a task ?t only if its current machine time is higher or equal to the
task’s release time and lower or equal to the task’s deadline subtracted by the
task’s duration when processed by the machine configuration ?c. The release
time and the deadline of the task are represented by the release-time and
the deadline numeric fluents, respectively. The duration of the task being
performed by the configuration ?c is specified by the processing-time numeric
fluent. The planning domain model also defines the total-cost numeric fluent,
which captures the sum of costs of all performed operations in the current
step of the planning process. The value of total-cost is used as a metric
of the objective function (defined in the planning problem) that informs
automated planning engines that the metric value should be minimized. The
lowest possible value of the total-cost numeric fluent computed from any
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feasible solution plan makes the given solution plan an optimal solution
for the corresponding planning task. Metrics were introduced, the same as
numeric fluents and durative actions, by the PDDL version 2.1 [4]. Figure
6.7 shows the truncated version of the original planning problem defined for
the Reconfigurable Machines domain. It demonstrates the initialization of
numeric fluents and the specification of the metric function.

Figure 6.7: Planning problem defined for the Reconfigurable Machines domain.

ATB-DCK defined for the Reconfigurable Machines domain is shown in
Figure 6.8. This ATB-DCK is very simple as it doesn’t impose any additional
constraints or modifiers (apart from its source and destination states) on any
of its transitions. It just restricts the number of original actions each machine
can perform according to the ATB-DCK state it currently lies in. At the
beginning of the planning process, all machines are placed into the unused
ATB-DCK state. In this state, the machine ?m can perform any defined
action. It can process some task ?t while staying at the unused state, it can
reconfigure itself and be moved into the reconfigured ATB-DCK state, or it
can wait for the release time of some task ?t and be moved into the idling
state. When the machine ?m is reconfigured, it can’t be reconfigured again
until it processes the task ?t for which it was reconfigured. Multiple machine
reconfigurations in a row can only worsen the metric value of the current
solution because each reconfiguration has some financial cost, which is added
to the total cost of all performed operations. Therefore, in the reconfigured
ATB-DCK state, the machine ?m can either process the task ?t and move
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back to the unused state or wait for the release time of the task t and be
moved into the idling state. After waiting for the release time of some task ?t,
it wouldn’t make sense for the machine ?m to do anything else than process
the given task. While waiting for releases of multiple tasks in a row doesn’t
financially cost anything, its prohibition simplifies the planning process by
reducing the search space. Thus, in the idling ATB-DCK state, the machine
?m can only process the task ?t and move back into the unused state.

Figure 6.8: ATB-DCK defined for the Reconfigurable Machines domain.

Because ATB-DCK defined for the Reconfigurable Machines modifies
preconditions of original operators only with its states, no additional DCK
memory predicates need to be specified. For this domain, DCK memory
predicates could be represented by an empty JSON object. As already
mentioned, all machines are initially placed into the unused ATB-DCK state.
Therefore, inference rules can be represented by a single rule as follows:

unused(M) :- machine(M).

For each machine defined in the planning problem and substituted for M ,
a new unused atom is created and added to the initial planning state of the
corresponding planning task.
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6.0.3 Performance Evaluation

This section compares the performance of solving the original and the ATB-
DCK-enhanced planning tasks of the Reconfigurable Machines domain. Both
the Blockworld and the Childsnack problems were already, among other
classical planning problems, fully tested in the paper that introduced ATB-
DCK [2]. The aim of this section is to demonstrate how ATB-DCK performs
for the numeric (non-classical) NP-hard planning problem of task scheduling
in Reconfigurable Manufacturing Systems.

The support for numeric fluents is among domain-independent planners
quite sparse. Because of the exponential growth of possible solutions, numeric
planning engines typically utilize some heuristic search algorithms, such as
local search [19], to preserve reasonable efficiency. Consequently, the solutions
they generate can sometimes be significantly worse than the optimal ones.
For testing instances of the Reconfigurable Machines problem, the numeric
planner LPG-td, utilizing the heuristic method local search, was chosen.

Table 6.1 shows the test results for four instances. Each instance defines
exactly two machines, four machine configurations, and from five to twenty
tasks. Testing took place on a machine with 8GB of RAM and an Intel(R)
Core(TM) i7-8750H processor clocked at 2.20 GHz. CPU time for finding the
solution plan was limited to 3600 seconds.

Without ATB-DCK With ATB-DCK
Instance Optimal cost time (s) cost time (s) cost

2x4x5 116 0.26 116 0.26 116
2x4x10 273 1477.38 273 312.43 273
2x4x15 396 TIMEOUT - 3047.62 578
2x4x20 583 TIMEOUT - TIMEOUT -

Table 6.1: Test results from solving original and ATB-DCK-enhanced instances
of the Reconfigurable Machines problem.

The first instance was solved successfully for both the original and the
ATB-DCK-enhanced planning task in the same duration of time. The second
instance was also solved successfully, but the ATB-DCK-enhanced planning
task notably outperformed (the difference was about 20 minutes) the original
one in terms of speed, despite being slow, too, for the relatively small size of
the instance. The third instance was solved in time only for the ATB-DCK-
enhanced planning task, but it took about 50 minutes, and the deviation of
its solution’s metric value from the optimum was about 45% of the optimum’s
value. The last instance with twenty defined tasks wasn’t solved at all.
Judging by the test result, it would be pointless to further test other instances

ctuthesis t1606152353 56



.................................6. Experimental evaluation

of the Reconfigurable Machines problem. It is evident that while ATB-
DCK can significantly improve the performance of the original planning task,
automated planning itself doesn’t seem to be a suitable approach for solving
NP-hard task scheduling problems, at least not yet.

It is important to realize that not every planning problem may benefit from
ATB-DCK, as was proved by test results from the paper introducing ATB-
DCK [2]. Each ATB-DCK transition generates a new planning operator. In
some domains, the number of ATB-DCK-enhanced planning operators can be
much higher than the number of original ones, which may introduce overheads
that outweigh the more efficient guidance of domain-independent planning
engines provided during the planning process by ATB-DCK. Predicate coun-
ters, representing integer values from possibly large intervals, could produce
such overheads as well. The performance of ATB-DCK is also dependent on
the chosen planning engine as different engines use different heuristics, and
some heuristics might utilize ATB-DCK better (or worse) than others.
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Chapter 7

Conclusion

This thesis defined ATB-DCK and used this definition to design a language
for ATB-DCK data representation. Furthermore, a graphical editor was
implemented to enable the intuitive creation and visualization of ATB-DCK
as a finite-state automaton. A text editor for ATB-DCK data represen-
tation, with its particular syntactical elements being distinctively colored,
was developed and integrated into the graphical editor. Finally, the thesis
specified ATB-DCK in three different domains with unique characteristics
and compared the performance of ATB-DCK-enhanced planning tasks with
the original ones defined for the NP-hard problem of task scheduling in
Reconfigurable Manufacturing Systems. An integration of two planners into
the graphical editor wouldn’t make sense because the editor’s only pur-
pose is to create the ATB-DCK data representation. The whole project,
including source codes of its individual components and test data of the ex-
perimental evaluation, can be found in the following public GitLab repository:
https://gitlab.com/hrustik97/atb-dck-graphical-editor.

In the future development, both the graphical editor and the program
for encoding ATB-DCK into the PDDL planning task specification could be
merged into a single GUI (Graphical User Interface) application integrated
with several domain-independent planning engines and with editors for rep-
resentation of PDDL planning task specifications, DCK memory predicates,
and inference rules.
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